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turmel c6 determine the effectiveness of utilizing solid circular cylinders to 
simulate the jet exhaust plrple for a series of four isolated circular arc after- 
bodies with little or no flow separation. This investigation vas conducted at 
Nach numbers from 0.40 to 1.30 at 0. angle of attack. 
simulator diareter to r,ortle exft diawter ratios of 0.82, C.88, 0.98, and 1.00 
uere Investigated with one of the four configurations while the 0.82 and 1.00 
simulators were investigated with the other thr%c. R”p”1P amber bas% on 
umdmum model diameter varied from approximately 1.50 x 10 

near 2, jet-on boattail pressure coefticient distributiarks and pressure drag 
coefficients for any af the configuratiooJ are closely approximated at the low 
subsonic Mach numbers (eg. I¶ = 3.60 and 3.60) by one of the smaller diameter 
simlators (diaaeter ratios of 0.82 or 0.86). while at the higher subsonic and 
transonic Mach n d e r s  (eg. M = 0.W to 1.30) use of one sf the larger diameter 
simulators (diaeeter ratios OC 0.98 or 1.00) resulted in good approximations of 
the jet-on pressure coefficieit distributions and drag coefficients. 
of one of the larger diameter simuletors at all Mach numbers would genetallp 
result in pressure coeffic’ent distributions and drag coefficients uecful for 
prallminary design work. 

An Lnvestigation has been conducted in the Langley 16-foot transonic 

Plume slarlators vith 

to 2.14 x 10 . 
Results cf this investiga :on indicate that, for jet total-pressure ratios 

However, us 

The tvo theoretical methods of boattail presmure 
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An investigation has been conducted In the  Langley 16-foot 

trmsodc tunnel to dete- the effectiveness of u t i l i z ing  so l id  

circular cyl faders  t o  simulate the j e t  exhaust plume for a series of 

four isolated circular arc afterbodies with l i t t l e  or no flow 

separation. 

t o  1.30 at  0' angle 0.c attack. 

dlaneter t o  nozzle exit diameter ratios of 0.82, 0.88, 0.98, and 1.m 

wefe investigated with one of the four configurations while the 0.82 

and 1.00 simulators were investigated with the other three. 

number based on nmxhum -del diameter varied from approximately 

1.50 x 10 to 2.14 x 10 . 

This investigatioa was  canducted at  Mach number8 from 0.40 

Plume simulators vlth simulatct 

Reynolds 

6 6 

Results of this investigation indicate &at, f o r  jet total- 

pressure ratios neat 2, jet-on boa t t a i l  pressure coefficient 

dis t r ibut ions and pressure drag coefficients for any of the 

configurations are closely approximated at the low subeonic Mach 

nmbers (eg. M = 0.40 and 0.60) by one of the smaller diameter 

simulators (diameter ra t ios  of 0.82 or  0.88),  while at  the higher 

arJsonic and transonic Mach numbers (ea. M I  0.80 t o  1.30) uee of one 

of the larger di-ter simulators (diameter r a t io s  of 0.98 or 1.00) 

resulted in good approximations of the  jet-on pressure coefficient 

distributions and drag coefficients.  

diameter simulators at  a l l  Mach numbers would generally result i n  

pressure coef f i c l en t  d i e t r lbu t ims  and drag coef f i c i en t s  useful for 

However, use of one of the larger  

ii PRECEDING PAGE BLANK NOT FITXED 



prelimhary design work. 

pressure coefficient distribution prediction evaluated as a part of 

this invest igation generally gave reasonably good approximations to the 

jet-on (again, jet total-pressure ratios near 2) boatta l l  pressure 

coefficient distributions but the resultant pressure drag coefficients 

were not sat isfactory.  

The two theoretical methods cf boatta i l  



TABLE OF CONTENTS 

~ ~ . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . .  

TABLEOFCONTENTS . . e 

LISTOFSYMBOLS . . . 0 

LISTOFTABLES . . . 0 

LISTOFFIGURES 

Chapter 

I. INTRODUCTION. 0 

11, EXpERIma APPARATUS AND PROCEDURE. 0 

111. RESULTS AND DISCUSSION . 
IV, CONCLUDINGREMABKSo 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . .  

I V  

Y 

1 

5 

19 

90 

92 

l v  



LIST OF sl[1BoLS 

A 

Bb 

‘m 

4 
‘Le 

C P,B 

oe 
B 
4 
‘m 

a 

M 

cross-sectional area, m 2 

nozzle base area, m 2 

2 nozzle exit area, m 
2 maxim.nn crosr-sectional area, m 

nozzle throet  area, I 2 

incremental area assigned t o  a boattail s ta t ic-premure 

orifice for dra8 i n t e ~ 8 t i o a ,  m 2 

boa t t a i l  prasrure drag coefficient, 

LA. 
Pfj - pa0 boattail preeeure coeff ic ient ,  

preseure drag on boat ta i l ,  R 

base diameter of afterbody, m 

exit diameter of nozzle, m 

malriann diameter of model, m 

diamter of p l m e  elmulator, m 

l w t h  of boat ta i l ,  m 

free-stream Mach number 
j e t  t o t a l  presoure, ala 2 

2 f ree-atream t o t a l  preueure, N/m 

2 free-stream static preeoure, N/m 

boa t t a i l  o t a t i c  pressure, I/r 2 

V 



v i  

a, 
R 

RN 

r 

S 

8 

TDP ,a0 
T 

t , J  

Tt ,- 
t 

x 

X 

6 

% 
0 

2 freestream dyaamic preaaure, N/m 

boattail circular-arc radius, m 

Reynolds number 

radial distance from center line of model, m 

nozzle convergence lmgth, m 

axial coordinate i n  nozzle cmergance section, m 

free-etream dewpoint, K 

jet stagnation temperature, IC 

free-stream stagaatlon tcmpcrature, K 

nozzle throat length, m 

axial distance aft from podel nose, a 

axial dimtance aft fram start of boattail, m 

t8rrrirral boattail angle, deg 

boattail chord angle, d.s 
m r r i d l u l  angle about d e l  axla, poritiw c l o c W r  

when viewed from rear, 0. at tap of -del, d88 



LIST OF TABLES 

Page 

Table 

1. AFTERBODY-SURFACE ORIFICE LOCATIONS . . 14 

2. SIMULATQB-SUBFACE ammx LOCATIONS . . . E 



LIST OF FIGURES 

Figure Page 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8 s  

9.  

10. 

Sketch of a i r p a t e r e d  cone-cylinder model with a 
typical circular arc convergent nozzle instal led.  . . . 6 

Air-pavered model with configuration 4 attached 
ins ta l led  in the  Langley 16-foot transonic tuunel . . . .  7 

Sketch of cone-cylinder nacelle model showing 
internal  sting arrangement for  support of s ida to - s ,  . . 9 

Nacelle model ins ta l led  in the Langley 16-foot 
transonic tunnel with typical circular arc afterbody 
and de/de = 1.00 a i m l a t o r  attached . . . . . . . . . . .  
Sketch of model and support syetem with corresponding 
cross-sectional area distributions.  . . . . . . . . . . .  11 

10 

Detailed sketch of typical  noeeh  rode1 with tables  
of geometric paramters  and intarnal coordinates. . . b 13 

Burd of the f r ee  stream parameters encountered 
during the  investigation. . . . . . . . . . . . . . . . .  17 

Comparison of preerure coef f i c i eu t  dis t r ibut ions 
obtained through the w e  of plume simulators with 
those obtained from jet  operation a t  p 
configuration 1 (&/dm . 1.77, de/d, . 0.50) . . . . . . .  
Comparison of pressure coefficient dis t r ibut iane 
obtained through the use of plume simulatore with 
those obtained from jet operation a t  ptr,/pap = 2 fo r  
configuration 2 (R/d,,, = 1.50, d /d - 0.60) . . , . 
Cbmparieoa of praaeura coefficient diatributiuus 
obtalned through w e  of plume elmulatora with 
thooe obtained from j e t  operation a t  p 

configuration 3 (a/$ . 1.50, de/$ . 0.70) . . . . . . .  

/pap - 2 fo r  
t s j  

23 

. . 29 e m  

/pa = 2 for 
t 9 j  

3.5 



Figure 

ix 

Page 

11 . 

12. 

13 . 

14 b 

1s b 

16 

Comparison of pressure coeff ic ient  dis t r ibut ions 
obtained through the use of plume simulators with 
those obtained from je t  operation a t  
configuration 4 (R/dm 2.00, d /d = 0.70). . . . 40 

Comparison of pressure coef f lc ien t  dis t r ibut ions 
obtained by use of the theoret ical  techniques of 
referqncea 26 and 27 with those obtained from je t  
operation a t  p 

ds/de = 1.00 simulator for configuration 1 

(&/dm = 1.77, d /d = u.50). . . . . . . . . . . . . . .  SO 

Comparison cf preesure coefficient dis t r ibut ions 
obtained by use of the theoret ical  techniques of 
references 26 and 27 with those obtained from jet 
operation a t  p 
1.00 simulator for  configuration 2 (a/dm = 1.50, 

Comparison of pressure coefficient dis t r ibut ions 
obtained by use of the theoret ical  techniques of 
references 26 and 27 with thoee obtained from jet 
operation at p 
1.00 simulator for  configuration 3 (&/dm 

Comparison of pressure r ,wff ic ient  dis t r ibut ions 
obtained by use of the tneoret ical  techniques of 
referencee 26 and 27 with thoee obtained from jet  
operation a t  p 

1.00 simulator for  configuration 4 (&/dm = 2.00, 

Comparison of integrated boa t t a i l  preaeura drag 
coefficients obtained through w e  of the  simulators 
w i t h  jet-on valuer for  configuration 1 (a/dm = 1.77, 

p /pm = 2 fo r  
t ,,j 

e m  

= 2 a d  from of t h e  t,,'P" 

e m  

/p, = 2 and from use of the d,/de = 
t , j  

de/dm=0.60). . . . . . . . . . . . . . . . . . . . . .  53 

/pa * 2 and from use of the ds/de = t.1 
1.50, 

de/dm=0.70).  0 0 e s 0 e o 56 

/po, = 2 and from use of the ds/de = 
t , j  

d,/dm=0.70!. 0 b o I 6 59 

de/dm=0.50). e b 63 



Figure 

h 

Page 

17. 

18. 

19 . 

20. 

21. 

22 

23. 

Comparison of integrated boa t t a i l  pressure drag 
coeff ic ients  obtained through use of the  simulators 
with jet-on values fo r  configuration 2 (&/d 1.5’’ 

P. de/dm=0.60). . . . . . . . . . . . . . . . . . . . .  t 

Comparison of integrated boa t t a i l  presrsre  drag 
coeff ic ients  obtained through use of the s iau la tors  
with jet-on valuea f o r  configuration 3 (L/dm 
d / d  m0.70). . . . . . . . . . . . . . . . . . . . . .  68 

Comparison of integrated boa t t a i l  pressure drag 
coeff ic ients  obtained through me of the elmulators 
with jet-on values fo r  configuraticn 4 (&/dm = 2.00, 
de/dm = 0.70). . . . . . . . . . . . . . . . . . . . . .  7 1  

Jet total-pressure r a t i o  var ia t ion with Mach n d e r  
fo r  typi  11 transport  and f igh ter  turbofan 
engines.., . . . . . . . . . . . . . . . . . . . . .  74 

1.50, 

e m  

Comparison of integrated boa t t a i l  pressure drag 
coeff ic ients  obtained through use of the  simulators 
with jet-on , pt,,/pm = 2 valuer ae a function of Mach 
number for  configuration 1 (&/dm = 1.77, de/dm = 
0.50). . 76 

Comparison of integrated b o a t t a i l  pressure drag 
coeff ic ients  obtained through me of the simulators 
with jet-on, p 
number for  configurrtion 2 (&/dm = 1.50, de/dm = 

/p, * 2 values as a function of Mach 
t , j  

0.60) s 6 0 81 

Comparison of integrated boa t t a i l  pressure drag 
coeff ic ients  obtained through w e  of the a i m l a t o r s  
w i t h  jet-on, pt,,/pm - 2 values as a function of Mach 

number fo r  configuratlon 3 @/dm - 1.50, %/dm = 0.70). 83 



Figure 

xi 

Page 

24. Comparison of integrated boattail pressure drag 
coefficiento obtained through w e  of the 
r,imulators wi th  jet-on, p /p, 2 valuer ad a 
function of Mach nrrmbe. for configuration 4 
(&/dm * 2.00, d /d = 0.70), , . . . . . . 85 

t * j  

e m  

25. Comparison of integrated boattail prsrrure drag 
coefficients obtained through w e  of the 
simulators with jet-on values at the trrsmeport jet 
total-preesure schedule of figure 20 e 87 



INTRODUCTION 

One of the most critical areas in the dasign of an a i r c r a f t  as 

f a r  a8 the requirement for  a low drag configuration is concersed is in 

the area of the afterbody and nozzles. 

extremely complex w i t h  upstream disturbances interact ing with the  

expaneion and succeeding recompression on the  boa t t a i l  aurf&e and 

both interact ing with the  j e t  axhowt plume. 

important t o  obtain knowledge of the  afterbody and nozzle flowfield 

and resul tant  drag aa ear ly  ae possiLle in the des im procedure t o  

insure that  the aftcrbody-nozzle deeiga is the best  poesible. 

Unfortunately, wind tunnel models for afterbudy-nozzle investigations 

which include mano t o  simulate the jet exhawt are extremely complex 

and cos t ly ;  both of which work t o  the disadvantage of the &ewer in 

hie attempt t o  obtain data early in the design procedure. 

complexity aerociated with the internal plumbing required for.t;ha j e t  

The flow In  t h i s  region is 

It is therefore 

The 

simulation medium whether i t  be air, HzOz, 5, or propane, otc. 

means tha t  there l e  a long lead time between the initial requi rannt  

for  a model and its design and complation. The coot of t h i s  type of 

modeL also helps t o  detor the cmattuction of the model u n t i l  the 

configuraticn liaer are frozeu t o  be iura that the model w i l l  

correctly represent the f i n a l  rsleczed conf iguration. 

It would thetafoto be extrendy advantageow to devire a method 

Whereby the afterbody-nozzle prururo distributlonm and 'Jenco ds- 

1 
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of a configuration could be reasonably vell predicted ear ly  io the 

design process either analy t ica l ly  or by use of a re la t ive ly  cheap 

wind-tunnel mdel. & attempt at a cheap, siaple subs t i tu te  for jet 

slamlation has been astd by lavie Research Center and others 

(refs. 1 t o  13 - These references are a l l  which could be foamd by the 

author at  thie writing which utilire this techoiguc for 8- 

the jet effects of a jet eneLpt exbust plum at eubsonic and 

transonic speeds.). This method tnmlxms the use of a stw rotmted 

model vith a "jet boundary,n "sting," or "plm" eilalrtor (bereafter 

referred t o  as a simulator) trbich is u0-y a circdar cylinder 

munted on the -del support sth8 rpborrc m t e r  is equal to that of 

the uorzle a t ,  thus simulating the OP-Qlliga jet p l u c  shape when 

On-design ~ a n s  that the exlt static prwaure of the jet qualm the 

freestream static pressure. For coaougent ao#leu, Uke thee of 

this Investigation, this occurs at a jet total=preasure ratio, 

/p,, of about 1.9. A t  jet tot.l-prasema ratio6 belw thi. poiat 

the nozzle f law l a  not choked and thus the cmhmnt n r a i a e  rabaanic 

w h i l e  at  prcesure r a t io s  above thie the exhaumt flaw is underexpunded 

and the e d m w t  plume u l l l  billow out trying t o  equalize 8Utk 

Note: References 1 to  13 and chi. lnwwtigation 8re lidtd 
solely t o  the siaulatian of the effectm of the &uot from 8 j e t  
engine a t  subsdc  and trttnsoaic epee& and thum the referencea 
exclude! all work om the eimulation of je t  eagine d m m t  e f f ec t s  a t  
superemic epee& and the elmulatian of rocket englue d u w t  
e f fec t s  at a l l  speeds. A typical -le of the forrr i. refereace 
13 while ruferences 19 and 20 are typical examplea of the latter. 
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The decision t o  elirinate work on slzulation of both je t  engine and 
rocket plume e f fec t s  a t  supersonic speeds w8s =de because the pl- 
blockage e f f ec t  predolinates a t  those  speeds and can be r w d l y  
well predicted uFth techniques Such 8s the method s f  charac te r i s t ics  
(ref.  18). Work on rockets at  subsonic and transonic speeds we8 
excluded because rocket  engines generally op-fate at very high je t  
total-pressure ratios and thus operate underqanded  due t o  mule 
weigh t  cms1deeratior.s sr ,d a t  ckcse ccndizions the plum? is 
def in i te ly  net a c i rcu lar  c y l i n d e r  (refs. 21 t o  23). 

Although chis  nethod has been used a number of tiares there  has been 

l i c t l e  u;& d o ~ e  t a  determine its vafidi:y. ks t  prevtous 

comparisons between with shulators and models with b u  

jets have been beween eodels of tuD d i f fe ren t  scales, or even 

between model scale and full scale. As a resu l t ,  any agreement 

between models could be fortdtous or any disagreemeat could be 

due t o  other fac tors  such as Reynolds number differeaces,  model 

support system differences, or variat ions in instrumentation location 

and accuracy between tests. 

In order to assess the v a l i d i t y  of uing sirmilators an 

investigation u t i l i z i n g  s i m l a t o r s  of various diamtcers vas conducted 

i n  the Langley 16-foot transonic tunnel in conjunction w i t h  the  air  

powered mode2 Investigation of several  circular arc a i te rbodi te  

(refs.  24 and 25). 

The invest!:-tion w a s  conducted at  k c h  numbers from 0.4C t o  1.30 

at  0' angla of at tack (The investigation of raferencer 24 .ad 23 

covered the same Mach number range with jet total-pressure ratios 

varying from Jet-off t o  about 6 depeadlng on Mach number.). Of those 

afterbodies reported la references 24 and 25 d p  those with Uttle 
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or 90 bomdary layer sapurtionvill be reported in thAs pqar. In 

rddition to evaluating the ameftbeso of the shdatars tro 

theoretical techniques for the p r e d i c a  of aft- pmaure 

dbtrlbutbns for aomseparated afterbodiea ( d 8 .  26 and 27) w i l l  be 

evaluated. mere are nrraraa other theoretical teclmlqtle6 for 

afterbody pressure dhtrlbutiar predlctlm. 

lnwiacid (as. refs. 20 to 32) while othem add a bowdary layer 

solatia~ (e& ref80 13, and 33 to 35) but it was felt that the m 

Sow are strictly 

wthode - hercfn t!?oadd be -we! of the c\trrmt 

''atate af the art." 



ExPEBxNENTdL APPARATUS m PlbDcEDURB 

Wind Tunnel 

This Investigation was conducted i n  the Langley 16-foot trsneonlc 

The tunnel, which is a single-return, contlnuqus, atmospheric tunuel. 

Z e s t  secticr is a regular octagon In cross sect ion with Slot6 at the 

corners of the octagon. The tunael speed is continwuely var lable  

from Mach 0.20 t o  1.30. Further deacriptior: of the  Langley 16-foot 

tran6oaic tunnel can be found In refermcar, 36 t o  38. 

Model and Support System 

A sketch of the slngle-e@.e nacelle model mad i n  the air 

powered portion of this iaveatigation (refa. 24 and 25) is ohom 

i n  f igure 1 with a typical  circular-arc b o a t t a l l  conf+quration 

attached. 

t h e  Langley 16-foot t r a a s o d c  tunnel. 

rounded shoulder at  the  junction of the  colrical nose and cyl indrical  

section. Xu t h i e  nacelle, dry, high=preasun .it at a rtagarrtlan 

temperature of about 274K ie introduced from the high presrwo p laum 

perpendicularly t o  the model axla into the  low p n r s u r e  p lenm through 

eight multi-holed rotdc norr;ler spaced at equal angle@ around the axla 

of the  high pressure plenum and thence accelerated r eana rd .  The flow 

smoothing screeab I n  the model t a i lp ipe  ware caartructed of 0.63S-cr- 

mesh, 0.0635 cm-dlameter-wire screen supported by four vanm. 

Figure 2 is a photograph of the nacelle model i n s t a l l ed  i n  

The cc .-cylinder nacelle had a 
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For the simulator investigation the conc-cylinder s ingle  engine 

nacelle model was modified by the addition of an in te rna l  s t i ng  

arrangement t o  provide a support fo r  the various simulators. A sketch 

of t h e  modified model is shown i n  figure 3 with a typical  circular-arc 

boa t t a i l  configuration attached. 

nacelle model ins ta l led  i n  the Langley 16-foot transonic tunnel with 

a typical configuration and ds/de = 1.0 simulator attached. 

Figure 4 is a photugraph of the  

The model was supported i n  t h e  tunnel by a sting-strut  support 

system, the ewept s t r u t  being attached t o  the aose of t h e  laode1 as 

sham i n  figures 1 t o  5 .  The center line of the  model w a s  located 

on the wind-tunnel center line, with the  center line of the s t h g  

55.88 cm below tha t  level. 

cross section with the  top and bottom capped by half-cylinders of 

2.54 cm radius. The s t r u t  blade was 5 percerrt thick with a 50.8 cm 

chord i n  the streamwise direction and with the  leading and t r a i l i n g  

edges swept 45’ .  

The s t ing  was 5.08 cmby 10.16 cm In  

A sketch of the model and support system l e  sham in figure 5 

dong  with corresponding cross-sectional area distributions.  

model blockage wae 0.099 percent of the test-section cross ~ect lon,  

and the &mum blockage cross section of the model and support 

rprtrar w u  0,148 parcrar. ‘Qo rting-rtrut pwitiomd tka -1) of tha 

model at tuunel s t a t ion  39.93 m~te ra .  

The 
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Tunnel 
- - .___- __ --I:-- 

A, crn2 
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Figure 5.- Sketch of model and support ryrtm with corterponding 
cross-sectional area distributioru, . 
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Afterbody Models 

A detai led sketch of a typical  afterbody m d e l  and a tab le  of 

dimensions fo r  the four configurations are presented i n  f igure 6. 

For the  a i r  powered portion of the  Investigation (refs.  24 and 25) the  

in te rna l  contour of each of the nozzles was essent ia l ly  an ASHE long- 

throat  nozzle (ref.  39) modified t o  f i t  within dlaensional constraints 

imposed by the external contour of each afterbody (length S and r as 

a function of s - f ig .  6 - changed from the ASME contours as 

necessary t o  go from a fixed in te rna l  diumeter t o  the  required exit 

diameter within the bounds set by the  external contour of the  b o a t t a i l  

and the required space for  tube routing and the length of the boattail) .  

The throat  (length t i n  f ig .  6 )  WUI c i rcu lar  i n  croar section. 

Instrurmntation and Teste 

The four afterbody models were equipped with s ta t ic-prerrure  

o r i f i ce s  dis t r ibuted longitudinally cm an equal-annular area b u l a  a t  

the locations given I n  tab le  1. 

(depending on conf iguration) which were connected t o  individual, 

remotely located, e l e c t r i c a l  rtraia gage prersure tranaducera. The 

simulators were each inettumrsted with 16 atatlc-preamure orifhea 

a t  the loca t iow given in table 2, Them orificor wet@ coarrclctrd t o  a 

pressure scanning valve Ins ta l led  i n  the model. A l l  prersure 

transducer6 were cal ibrated t o  an accuracy of 3 . 5  percent of the  

4 2  capacity of the gage (rtatic-prerrura ga$n 1.72 x. 10 N/m and 

3.45 x 10 N/m ; jet total-prrorura gaer 6.89 x 10 #/m ). 

The model8 had from 48 t o  72 or i f i ce s  

4 2  5 2  
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Teble 1 
APII"ERBDY-SURFACE ORIFICE LOCATIONS 

x / l  x/dm 

0 0 
.234 .3!jl 
.4m ,615 
-535 .a02 
.64o .si 
0825 1.238 
.911 1 . ~ 7  
.9p 1.450 

*'736 1.104 

0 0 
0271 b b 6  
0474 O g . 1  

,618 ,928 
41 i . i i r  

l&l 1.276 

0 0 
.2m ,540 
*4n .gJ6 
'610 1.235 
.740 1.480 .m 1.701 
454  1.909 

X X 
x x  
X X 
x x  x 
x x  x 
x x  x 
x x  x 
x x  x 
x x  x 
x x  x 

cONF1GuRATIon 1 
X 

X X 
X 
X X 

X x 
X X 
X X 
X X 
X X 
X X 

CONFIGURATlION a 
x x  x x X 
x x  x x X 
x x  x x X 
x x  x x X 
x x  x x X 
x x  x x X 
x x  x x X 
x x  x x X 
x x  x x X 

X X X x 
X 

1 X 
X X x X 

X 
X 
X X X 
i 

a X 
X X X X 

-I 

x X X 
X 
X 
X X X 
X 
X 
X x X 
X 
X 

co#FI~'!rIOra 3 
x x  x x X X X X 
x x  x x X X 
x x  x x X X 

x x  x x X X X X 
x x  x x X X 
x x  x x X X 
x x  x x X X X X 

C O N F I G U R A ~ O ~  4 
x x  x 1 X X X X 
x x  x x X X 
x x  x x X X 
x x  x x X X X X 
x x  x x X X 
x x  x x X X 
x x  x x x X X x 
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1.458 2.917 
1.500 3 OW, 

1 . 583 3.167 
1.667 3.333 
1 ., 750 3.m 
1.833 3.667 

I 

Table 2 

SIMULATOR-SURF~.~% ORIFICE LOCATZONE 

COWFIGURATION 1 

1.047 
1.094 
1.141 
1.18s 
1.236 
I. 283 
1.330 
1.377 
1.424 
1.471 
1.519 
1.566 
1.660 
1.754 
1.848 
1.943 

4.. 351 
1.935 
2.018 
2.101 
2.18s 
2.268 
2.351 
2.435 
2.518 
2.601 
2.68s 
2.768 
2 935 
3.101 
3.268 
3.43s 

CONFIGURAT?'INS 
2 A N D 3  

X l t  x/dm - 
l.OS6 
1.111 
1.167 
1.222 
1.278 
1.333 
1.389 
1.444 
1.soo 
1 . SS6 

1.611 
1.667 
J.. 778 
1.889 
2 . 000 

2.111 

1.583 
1.667 
1.790 
1.833 
1.917 
2.000 
2.083 
2.167 
2.2so 

2.333 
2.417 
2.500 

2.667 
2.833 
3.000 
3.167 

COWICURATION 4 

x: e "Id,  

1.042 
1.083 
1.125 
1.167 
1.208 
1.250 
1.292 
1.333 
1.375 
1.417 

2.083 
2.167 
2.250 
2.333 
2.417 
2. so0 
2.583 
2.667 
2.750 
2.633 

All tests were conducted in the -ley 16-foot t r u u d c  tunnel 
Hade1 at  Mach nrmrbers from 0.40 to 1.30 at u1 angle of attack of 0.. 

attitude wab set so 8s to account tor tam1 upflow, but no account 

extremely elaall. Roundary layer rraaoition on the model w a  fixe4 by 
a 0.254-cm rtrip of No. 100 grit,  2.54 cm from the nom, in accsrdance 
with the techniquer described in refereacrr 40 .ad 41. 

Since the Langley 16-foot tranmonic tunnel I 6  an atmospheric 

W U  Of P088ibl.6 8tb8 &fhCt&m v b u  U.S f 0 t d  t o  b$ 
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tunuel the  t d  free-stream coaditioae will vaxy according to  the 

&lent conditions. 

nmber is ahawn in figure i. 

temperature as spa11 as possible data wre taken a t  the -at Lkch 

number f i r s t  and then at progressioaly lo- Mach P1pbers. For each 

Ha& umber a t  which data were required the tunnel condltioas were set 

and allawed t o  stabilize at Olhich t h  a d e r  of fr- of data sere 

taken, the average of which was used to  compute the Wired 

coefficients. 

because the  16-foot tunnel has a s d  cyclic variation in the flow 

with e period of about 10 secmda and it- f e l t  that an a-e 

of a number af fravres would give the beat UL4Ytr. 

The rage of free-atrear conditioxm vertsua Mach 

To Letp the variation in turrocl t o t a l  

An average of a nmber of fraws of data was w e d  

D.ta Reduction 

Prcssurt? drag coef f ic ients  were corputed fram the W u n d  

pressures on each boat ta i l ,  lbcse coef f ldmt ta  are based on mmxlum 

cross-sectional area of the model ant! were obtained from the presson 

data by a e s l ~  an equal annular area to  each orifice i n  the tap 

!the top row of or i f icea  v u  ueed uclumlvely became of tha 

possibility of suppart-strut interference. 

it waa reported tha t  the data  fram the 6 - 0. IQV of ariflcea could be 

arauaad to be interference free, and anpubliahed data from the ptcuent 

In trfctencea 2b and 25 
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InvesAgatbn which c a r e d  pressure8 on these boattails rounted on 

the stwstrut wlth pressurea on the SEY boattails rounted on a 

sting support this belief. 

on the small rim at the nozzle exit bemeen % and de (see fig, 6) , 

Flo attempt was made t o  include the forces 
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RESULTS AND DISCUSSION 

Pressure distributions.- The je t  exhaust plume a f f ec t s  the  

afterbody b o a t t a l l  pressures In two ways: 

external air flowing Over the  boa t t a i l  and by t h e  s o l i d  bldckage o r  

shape e f f e c t  of a body dwnstream of the boa t ta l l .  These two 

phenomena result in opposite e f f ec t s  on the  b o a t t a l l  pressure 

d ls t r lbu t loas .  The eutralnment of the  external flow causes a 

reduction in the  afterbody preseure coeff ic ients  while the  s o l i d  

blockage e f f ec t  causes a rise in t h e  afterbody pressure cocfflcientr:. 

I n  t rying t o  d e 1  the  e f f e c t s  of the jet exhaust on the afterbody both 

of these phenomena should be takeu into account. However, at  the  

present time it  is impossible t o  predict  the  eutralnmnt of any given 

jet. Therefore, the  me of c i rcu lar  cylinder simulators is, at beat, 

a compromiee in that  t h e . j e t  antrairmvnt e f f ec t s  wil l  not be simulated 

and only the p lum shape of a nozzle operatirrg at  its design point 

W i l l  be matched ( s t r i c t l y  true only  at e t a f i c  conditione due to  the  

e f f ec t  of the  body induced f l w  angle of the external flow on t he  

plume shape, tha t  l a ,  the  flow aver the  boa t t a i l  l a  parallel to  the  

b o a t t a i l  surface and thus tmm a f i n i t e  moment= diTected toward the 

center of the j e t  when i t  leavee the  end of the  boa t t a i l ) .  

Fortunately this compromise is not: too bad, aapecially for  the  higher 

subaonlc Mach numbera. Moat subaonic t r ampor t  a i r w a f t  and f igh ters  

by the entrainment of 
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at subsonic cruise u t i l i z e  convergent nozzles and turbofan engines 

which operate In a range of jet total-pressure r a t io s  2ear the 

convergent nozzle design point of about 2 (see fig. 20). 

data of references 24 and 25 show tha t  there  are no significant 

variations in afterbody boa t t a i l  drag levels  with J e t  total-pressure 

ratio until w e l l  past a jet total-prcssure r a t i o  of about id 

result, simulating the design po1x.t jet total-pressure r a t i o  

(p 

e r r o r  in drag due only t o  the  missing entraiarnant e f f ec t  and the  

effect of the body ipduced flaw angle on the  jet plume. 

Also the  

Aa a 

/p,,,, = 2) with the so l id  cylindct s h u l a t o r  should result in an t.3 

Shawn in figures 8 to  11are caaparisaae of the afterbody 

pressure coefficient dis t r ibut ions f o r  the four configurations of 

t h i s  paper obtained through the we of ahulators of varying diameters 

(delde of 1.00, 0.98, 0.88, and 0.82 f o r  conflgpration 1 end ds/de 

of 1.00 and 0.82 fo r  configurations 2, 3, and 4 )  with pressure 

dis t r ibut ions from references 24 and 25 which were  obtained with Ugh  

pressure air (at p 

smaller than exit diameter were ut i l ized  i n  .LL attempt to lwrm the  

blockage e f fec ts  and as a result skulate the  comblnatlon of 

blockage and entrainaent effoctr .  

dlatributioar on t he  eimulatota thmoelvoo a m  aham for i n fo ru t f an .  

/p- = 2) M the  exhaust medium. Sirnutatom of t ,J  

The preraure coefficient 

Figure 8 preeentr the simulator-jot-on carparisow f o r  

configuration 1 (R/dm = 1.77, de/dm - 0.50). A t  the lower Wch numberr 

(e& Y = 0.40 and 0.60) entrainment .ku a larger ef foc t  on the aftezbody 
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pressure coeff ic ient  dis t r ibut ion than i t  does at the higher subsoaic 

Mach numbers where the exhaust and f ree  stream have close t o  the same 

velocity (eg. H = 0.85 to  0.96). As a resu l t ,  the jet-on pressure 

coefficient dis t r ibut ions a t  the low Mach numbers are more closely 

represented by one of the smaller diameter simulators than by the 

dll/de = 1.00 simulator w h i l e  those at the higher subsonic Mach numbers 

are m e t  closely represented by the d,!d, = 0.98 simulator. A t  the  

supersonic Mach numbers investigated, the boa t t a i l  pressure 

coeff ic ients  upstream of the shock (shock located at approximately 

x/dm - 1.45 

simulators and f o r  jet-on w h i l e  downatream of the shock in the  

separated region (shock induced separation) the jet-on presaure 

coeff icieats gensrally fa l l  between the pressure coeff ic ients  for the 

ds/d, = 0.98 and ds/de = 0.88 simulators. 

larger  di-ter simulators a t  a l l  Mach numbers would generally r e su l t  

in pressure coefficient dis t r ibut ions with the  correct shape ami 

minimum pressure coeff icient sat isfactory for  preliminary des- work. 

fo r  t h i s  configuration) are about the same f o r  a l l  the 

Eowever, use of one of the  

The same general comments are val id  for  the other three 

configurations (k/d = 1.50, de/dm = 0.60; $/dm = 1.50, de/$ - 0.70; 

and R/dP = 3-00, de/dm = 0.70) in figures 9,  10, and 11. m o a  by 

erratSining the various pressure coefficiant dl8tributions at  any given 

subsonic Mach number it becoma8 apparent tha t  as the b o a t t a l l  angle 

and the resul tant  inflow into the plume are reduced so is the e f fac t  of 

the e n t r a i m n t  and as a reeult the preaeure coefficient dirttibutLon8 

obtained Wlth tha larger  diameter simulator6 (eg, d,/de - 0.98 rmd1.00) 

m 
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more closely match the jet-on @t,j/pm = 2) data since thcy more 

closely match the p l m e  blockage effect .  

Comparison with theory.- There are several theoretical techniques 

available with which to  predict  after- pressure dis t r ibut ions 

(refs. 26 t o  35). One of the most widely w e d  and one of the  most 

recent are given in references 26 and 27 respectively. 

are both i n o i s c i d  solutions but u t i l i z e  d i f fe ren t  solution techniques. 

These methods 

Reference 26, which is a relat ively inexpensbe method in t e r n  of 

computer time and cost, ittilizes diatr ibcted sources and siab on the 

body surface t o  calculate the flau-field and resul t ing bodr pressure 

dietribution. Ia'order to  simulate jet effects with this rwthod the 

jet p l tne  shape muat be .specified and Input l ike a solid body 

downstream of the nozzle exit. Reference 27 utilizes a stream tube 

curvature analysis in which an initial grid of strerrliats and 

orthogonals is set up and then refined in ea iterative solution 

(relatively expensive i n  computer time and cost), 

capabili ty o f  calculatiag its o m  plume ~hape for low jet total- 

This mthod has the  

pressure r a t i o  exhaust flows so t ha t  only J e t  total-pressure, total- 

temperature, and c d t  Mach number need be specified in order t o  

simulate a jet urhauet (pltnrm resulting from tbis dculation are 

very dome t o  cylindrical) .  Since thme  -tho& are inviscid 

solctione they do not take in to  account the boundary layer  d e v e b m t  

on the  afterbody. 

contribution to the  resultant presrure dl6trlbution. In an attempt 

'Ihis can often result in neglecting a significant 
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t o  account f o r  the contributions due to boundary l a y e r  developmmt the 

-thod of reference 26 has been modified at  :& lanpley 16-foot 

transanic tunnel by ttre addition of an iterative boaadary layer 

solut ion which w a s  adapted from reference 34 (arodified ReshotLa-TucLer 

solution). 

re la t ive  ease in adaptlng an existing computer program there are 

several other boundary layer solutions which could be adapted t o  sene 

the same purpose (eg. refs. 42 t o  47).  

boundary layer  solut ion w h i c h  is used In conjunction with Its Inviscid 

solution, hawcver chi .  program is still under tieveloppent and the  

boundary layer solut ion does aot work correctly f o r  mst diguratlops 

at the present time. 

Although this particular solution was used because of the  

Reference 27 discuescs a 

Figures 12 to l!! pt-s c u + r k m . ~ ~  of the afterbody presaure 

coefficient d i s t r lb i t i ans  fo r  the four ccaflgurations of this paper 

obtained both jet- at a J e t  total-pressure ratio of two and with the 

ds/de = 1.00 simulator at VBflOllE) Mach nmbers with the pressure 

coeff ic ient  dis t r ibut ions M predicted by the theoret ical  methods. 

all casea the so l id  body used to slmulate the J e t  p l t a e  shape fo r  the 

method of reference 26 was a circular cylinder w i t h  the  diametar of the 

cylinder equal to the exit dlmter of the norale (sarr as dJde - 1.00 
simulator) . 

In 

Figure 12 presents the  pretssure coefficient d b t r i b u t i o a  

comparisom fo r  configuration 1 (u$ - 1.77, de/d,, - 0.50) at  eix 

subsonic Mach nmbera from 0.40 t o  0.90. A t  all Mach n d c r o  except 
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M - 0.90 the method of reference 26 predlcts  the  d d m m  p r a s u r e  

coeff ic lent  on the b o a t t a i l  very uell and the  general shape of t he  

cume f a i r l y  w e l l .  

such 

pressures near the boattail trailing edgc are too high because a 

concave corner such as bemeen the b o a t t a l l  and the asswned 

cy l lndr lca l  pl- results In  the theory predicting a stagnation point. 

At l¶ = 0.90 the theory Padcrcpredicts t h e  peak negative pressure 

coeff ic ient  by a s l l g b t  mum. This is probably due t o  the  

laadequacy of the Goethert a i d l a r i t y  rule used In the solut ion at 

this tranaonlc Mach ndser. 'Ihe addition of the boundary layer  

rolutioa to this aethod v i r tua l ly  elirinrtes the  problem of the 

sta8natiorr point at  the t r a i l l a g  edge; hawmar, it  does result In  the 

predicted b o a t t a i l  pteosure coeff ic ient .  b e h g  too high (It muat be  

noted tha t  the  prograpwould not run f o r  configuration 1 at Mach 

numbers of 0.80, 0.85, and 0.90 and for configuration 2 at Mach 

numbers of 0.85 and 0.90 and, as a re~ul t ,  no boundary l aye r  corvc~ 

are shown f o r  t h w e  conditions.). 

Since this is an M s c i d  solut ion which neglects 

as the boundary layer  " f i l l e t ing"  corner8 the  predicted 

The method of reference 27 produceo varied rwults; at some M.ch 

nmbers the  predicted pressure coef f ic iea t r  aze laostr than thoro 

obtained with the jet operating o r  witb the  plrnr sinulatorr while 

at other  Mach numbers it predicts  prerrure  coefflcienta tha t  are too 

high. The reason for t h i s  le that the  program oats up a gr id  of 

etrerdlinea and otthogonala at a given Wach nmber and tefimr it 
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u n t i l  cer ta in  convergence c r i t e r i a  are met at  which point It produces 

answers and proceeds t o  the  next Mach number. 

number it starts with the  already developed gr id  and does any fur ther  

refiaement necessary, produces answers, and a t a r t e  the process over 

again. However, in most Instances the  refinement criteria are not 

su f f i c i en t ly  s t r ingent  and 

equations of motion for more than one Mach ntapber and when t h i s  occurs 

the  predicted pressure coeff ic ient  diet t ibut ions w i l l  be es ren t ia l ry  

the  same f a r  both Mach numbers, It i r  a t  the  Mach numbers where the  

gr id  has changed that the  program predicts pressure coeff ic ients  lower 

than the data while an increase i n  Mach number above t h i s  but before 

the next grid refinement will  result In  a decrease in the  measured 

pressure coeff ic ients  with the  predicted coeff ic ients  remaining the  

same and thus changing the relationship of the  two cunres, 

addition, t h i s  cheory also predicts pressure coeff ic ientr  t ha t  are 

to3 high I n  the  region near the boa t t a i l  t r a i l i n g  edge but they are 

not as high as those predicted by the  method of reference 26. 

A t  the  next Mach 

thus the  same grid will s a t i s f y  the  

In 

Similar statements can be made f o r  the  comparisons f o r  the other  

The theory of reference three configurationrr (figs. 13, 14, and 15). 

26 does a reasonably good job of predicting the  mlaimrrm prerrure 

coef f lc iea t  reached on the  afterbodles but  does a poor job at  the  

t r a i l i n g  edge where it predict8 a stagnation point. The addition of a 

boundary layer  solution t o  t h i s  theory eliminates the  problem with the  

t r a i l i n g  edge @tagnation point but caullea the  whole prersure 
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coefficient dis t r lbut ion to be s l lgh t ly  high. Praeuure coeff ic ient  

d l s t r i b u t i m  ftam the method of reference 27 are smetimea too law, 

sa~~tlmes too high, and have a sligbt problem at the b o a t t a i l  t r a i l i n g  

edge but not as large as those obtained w i t h  the nethod of reference 

26. In stmary? these theoret ical  technlquea do a reasonably 8006 

job of predicting the afterbody pressure coefficient distrlbutiom~ f o r  

these upseparated af terbodi ts  but not ae goad a job as the da/de = 1.00 

slmulatore. In additian,  the Integrated b o a t t a l l  preasure drag 

d u e s  vhich would be calculated from these theoret ical  prcreure 

dis t r ibut ions would, In  general, predict  afterbody drags mxh lawer 

than the jet-on, 

therefore be maat isfactory fo r  drag ea tha t ion .  Also, I f  oeparatioa 

occurs an an afterbody such as the  configurations of refeacntcs 24 and 

- 2 drag for all configurations and p t  , j 

25 not t reated herein the theoretical pressure d f i d e n t  dietribation 

predictions would be conalderably bore in er ror  and the resultant 

afterbody drag values would be t o t a l ly  unrarttic. 

Boattail draa.- Figurer 16 t o  19 shaw cumea of t o a t t a i l  greasure 

drag coefficients a8 a function of jet total-premure ratlo (p 

from references 24 and 25 w i t h  the pressure d r w  coefficienta obtdned  

using the eimulatorr ruperlmpooed on them. Am ment;+.aad before, 

configuration 1 @/dm = 1.77, de/dm - 0.90) was teoted witb four 

simulator dlameterr (ds/de = 1.00, 0.98, 0.88, and 0.82) while the 

other three configurations were tasted wlth only the  d /d - 1.00 a d  

0.82 simulators. With the exception of coai l~rat iaa  2 U/dm - 1.50, 

&/dm - 0.60) at M = 0.60 the drag coeff ic ients  obtained wlth the 

/pa) 
t s j  

r e  
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= 0.82 simulators were always higher than any jet-on drag ds/de 
coeff ic ients  obtained f o r  the corresponding configurations at  a ~ y  

Mach number. 

simulator tes ted w i t h  configuration 1 were a lso  higher than any jet-on 

drag coeff ic ients  with the  exception of the Mach numbers of 0.40 and 

0.60. Also for  configuration 1, the b o a t t a i l  drag coeff ic ients  

obtained with the ds/de = 0.98 simulator generally crossed the  

C vs. 

and 2 a t  subsonic speeds and about a jet  total-pressure ratio of 3 at 

aupersonic speeds. 

The drag coeff ic ients  obtained with the  ds/de = 0.88 

cume at a jet total-pressure ratio of between 1 D , 8  

These results are generally as expected based on the pressure 

distributions.  

more closely match the drag coeff ic ient  levels  at the l o w  Mach numbers 

where the  entrainment effects are large and these entrainment e f f ec t s  

reduce the  beneficial  blockage e f f ec t  of the  f u l l  jet plume. 

large diameter simulators (d /d = 1.00 and 0.98) more closely match s e  
the  drag coefficients a t  the higher Mach numbers where the emtraixment 

e f f ec t s  are not as great. 

generally results i n  drag coefficient values corresponding t o  jet 

total-prersure ra t ios  i n  the range of 2 t o  3. 

the  typical  operating range fo r  subsonic transport a i r c r a f t  and fo r  

f ighter-type a i r c r a f t  a t  subsonic cruise  conditione as evidenced by 

the  two typical  curves of operating jet total-presaure r a t i o  aa a 

function of Mach number shown in f igure 20. 

coeff ic ient  data thus obtained by use of a model with the  simulators 

The smaller diameter simulators (ds/de = 0.82 and 0.88) 

The 

However, we of the  ds/de = 1.00 simulators 

Fortuitously, t h i s  is 

Therefore the drag 
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(a) M = 0.40 t o  0.94 

Figure 16,- Comparison of integrated boattai l  preseure drag coefficients 
obtained through use of the simulators with jet-on values 
for configuration 1 @/dm = 1.77,  de/dm = 0.50). 



64 

d. 25 

c 
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(b) M = 0.96 t o  1,:.0 

Figure 16. - Concluded. 
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(a) M - 0.40 t o  0.90 

Figure 17.- Comparison If integrated boattail prceeute drag caeff lcitnts 
obtained through w e  of the elwilatorr with jet-on values 
for configuration 2 (a/dm = 1.50, de/d, - 0.60). 
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(a> M 0 0.92 t o  0.96 

Figure 17 .- Continued, 
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24 

‘D.8 

pt, J 

( c )  M = 1.15 t o  1.30 

Figure 17 - Concluded. 
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(a) M = 0.40 t o  0.80 

Figure 18.- Comparison of integrated boatta i l  pressure drag coef f ic ients  
obtained through uoe of the elmulatorr with jet-on values 
for configuration 3 @/dm = 1.50, de/dm 0.70),  
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(b) M = 0.85 t o  0.94 

Figure 18,- Continued. 
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(c) M = 0.96 t o  1.30 

Figure 18.- Concluded. 



71 

(a) 11 = 0.40 t o  0.94 

Figure 19 .- Cnnparieon of integrated boattai l  praeaurt drag coef ficieat3 
obtained ,hrour' w e  of the simulator6 with jet-on vl:I~ieo 
for configurat- r (Rld, - 2.09, de/$ = 0 .U) '  
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is 

(b) M = 0.96 t o  1.30 

Figure 19.- Concluded. 
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would provide useful information for  ear ly  deaign pertaining t o  the  

jet-on operation of the a i r c ra f t  configuration espec ia l ly  when 

Lampared t o  having t o  re ly  on drag data obtained at  jet-off conditions. 

To fur ther  i l l u s t r a t e  the capabili ty of the  simulators t o  provide 

reasona>le approximations of the drag coeff ic ients  for  an afterbody 

configuration with j e t  operation the boa t t a i l  drag coeff ic ients  

obtained with the simulators have been plot ted as a function of Mach 

number and compared with jet-on = 2 (design point - where the  

plume should be a cylinder w i t h  a diameter equal t o  the  exit dhneter) 

drzg coeff ic ient  data from referencea 24 and 25 h figures 21 t o  24. 

The comparisons fo r  a given configuration are i n i t i a l i y  shown wlth t h t  

drag coeff ic ient  data for  an individual afterbody-simulator configura- 

tion compared t o  the jet-on data and then the  drag coeff ic ient  data 

fo r  a l l  the  s b u l a t o r s  tes ted  with the par t icu lar  afterbody 

configuration in question are shown together with the jet-on drag 

coefficient data fo r  that coafigursCim (where a l l  the simulators are 

plotted together the jet-on data points are f i l l e d  for  ease in reading 

the figure). 

is evident tha t  the  larger  diameter (d8/de = 0.98 and J.,OU) simulators 

more closely mtch the  jet-on drag coeff ic ients  -or ill four 

configuretions fo r  a greater  range of Mach numbers and, it-. particular, 

f o r  the more important transonic range of Mach numbers than do the 

smaller diameter simulators (d /d = 0.82 and 0.88) .  To be able  t o  

choose one simulator diiuneter.for general w e  t o  reach a compromise 

brLween piume blockase and entrainment e f fec ts  would require 

As was concluded from the  previously presented data i t  

e e  
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additional tests with both the d,/de = 1.0 and 0.98 simulators and 

s ' d a t o r s  of s l igh t ly  smaller diameter (down t o  poss ib l j  d /d * 0.95) 

with a qreater number of configurations. However, the present results 

dc. Indicate that  the simulators can be an ef fec t ive  too l  to gain 

information about the jet- drag character is t ics  of an afterbody 

configuration both qulckly and re la t ive ly  inexpensively. 

s e  

Additionally, f igure 25 shows cross-plots of the  jet-on utag 

coeif ic ient  data from references 24 and 25 for t h e  four configurations 

of this paper at t h e  transport jet total-pressure r a t i o  schedule of 

figure 20 compared t o  the drag coefficient data obtained using the 

various simulators with those configurations. 

diameter simulators (ds/d = 0.98 and 1.00) more closely match the jet- 

on drag t J e f f i c i en te  f o r  a l l  four configurations f o r  a larger range of 

Mach numbers and f o r  thoae Mach numbers in the  critical high subsonic 

regime than do the saaller diaaeter (d8/de = 0.82 and 0.88) simulators. 

This s i m i l a r i t y  t o  the  p /po, = 2 comparisons is due t o  the 

follasing: 

not vary too far from a p 

numbers tested, and the jet-on drag coefficients fo r  these afterbodies 

do not vary eigaif icant ly  from the p 

pressure r a t io s  near 2. 

Again, the  larger 

e 

t , j  

The j e t  total-?teseure r a t i o  schedule of figure 20 does 

/p, of 2 for  the range of subsonic Mach 
t s j  

/pm 9 2 values of jet total-  
t,j 
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dJde 0.82 
.08 

.04 

ti 
. 3  .4 . 5  .6 .? .a  .9 1.0 1.1 1.2 1.3 1.4 

M 

(a) de/de = 0.82 and 1.00 

Pigure 22.- Comparison of integrated boatta i l  prereure drag 
coefficienta obtained through w e  of the elmulatore with 
jet-on, *. 

for co~1A?pmitton 2 (A/d, = 1.50, de/d, 
/pm - 2 values as a function of ~ a c h  number 

'.,j 
0.60) .  
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CHAPTER IV 

CO: ZLUDING REHARRS 

-4n investigation at 0. angle of attack has been conducted in the 

Langley 16-foot transonic tunnel at ndch numbers fram 0.40 to 1.30 

to dettrmine tke effectiveness of utilizing solid circular cylinders 

to simulate the jet exhaust plme effects on a series of four isolated, 

nonse?arating, circular arc afterbodies. The results of this 

investigation indicate three primxy conclusions: 

1. Use of the jet p l u m  siaailators resul ted  IQ boattail 

pressure coefficient distributions close to jet-on (p 

pressure coef ficient distributions for all configurations at all Mach 

numbers. The smaller diapctcr simlators (d /d = 0.82 and 0.88) 

generally produced pressure coefficient distributions which lore 

closely natched the Jet-on distributions at lau subsonic Mach n d e r s  

(eg. M = 0.40 and 0.60) where entraimwmt effects are large. 'Ihe 

larger diameter simulator8 (ds/de = 0.98 and 1.00) generally more 

closely matched the jet-on pressure coefficient distributions at the 

higher subsonic Mach numbers (eg. M = 0.80 to 0.96) and transonic Mach 

numbers where the blockage effecc predominatce. 

of the larger diameter simulators at a l l  Mach numbers vould generally 

result in pressure coefficient distributions with the correct shape 

and minimum ptzssure coefficient satisfactory for preliminary 

design work. 

/p, = 2) 
t.J 

s e  

However, use of one 

90 
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2. Caparisans of the  integrated pressitre drag values obtained 

through me of the  silrmlators with those jet-on values from the 

references follow the sane trends as the pressure coeff ic ient  

d i s t r ibu t ion  comparisons. 

d i a re t e r  s i ru l a to r s  (ds/de = 0.82 and 0.88) match drag coeff ic ients  

more closely while at  the higher Mach numbera the  Larger d i a r t e r  

s laulaton,  <ds/de = 0.98 and 1.00) are sOICVhat bet ter .  

of the large diameter simulators for al l  Mach numbere would probably 

r e s u l t  I n  integrated drag coeff ic ients  which would be of value in the 

ear ly  design stages of an a i r c r a f t  configuration. 

simlator/exit diameter r a t i o  t o  soat accurately sirulate the dual 

p l u e  e f f ec t s  of blockage and entrafnvnt f o r  general use vould 

require fur ther  t ea t l ag  with a number of elmlators and additional 

efterbodles. 

3. Both of the theoret ical  techniques evaluated A a par t  of 

t h i s  investigation gave reasonably good approxipatione t o  the  correct 

pressure coeff ic ieat  dis t r ibut ions when compared with the jet-on 

dis t r ibut ions from the references although both predict  a stagpation 

point a t  the boa t t a i l  trailing edge. 

probably be preferred fo r  its c o ~ i s t e n c y  In  predicting the peak 

negative pressure coeff ic ients  reachad OD each b o a t t a l l  for  most Mach 

numbere. It must be noted tha t ,  although the pressure coeff ic ient  

dis t r ibut ions were reasonable, the resultant pressure drag coefficients 

were unsatisfactory. 

A t  the  lover Mach number8 the  8-11 

Again, use 

Choice of a 

The Pcthod of reference 26 would 
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